Asymptotic Quadratic Estimators in the Random, One-way Anova
ثبت نشده
چکیده
د . يواھربلا دمحا باھش رابجلا دبع دعاسم ذاتسا ةیتامولعملاو ءاصحلاا مسق تایضایرلاو تابساحلا مولع ةیلك لملا خ ص ه ضرعتي باسـحل لمعتسـت يتلا تلادعملا ضعبل يئاوشعلا رارقتسلاا ىلإ ثحبلا اذ نيابتلا ليلحت يف تاعبرملا عومجم . ةبلاـس رـيغ تاردقم داجيلإ تلادعملا هذه تلمعتسا دقو أطخلا نيابت نوكمل ردقمك أطخلا تاعبرم لدعم ردقم لمعتسا نيابتلا نوكل . اردقم اضيأ يطعأ ثيروتلا لماعمل . خلاا قتشا امك رـظنب ةـلاقملا هذه تذخأ اريخأو نيابتلا نوكمل يذاحملا رابت ّايئاوشع ًاريغتم ةيلخ لك يف تاظحلاملا ددع نوك رابتعلاا . SUMMARY The paper considers stochastic convergence of certain means used to obtain the between sum of squares in analysis of variance. These limiting random variables are used to obtain a nonnegative estimator of the between component of variance. The usual ANOVA estimator of the within component of variance is considered. A nonnegative estimator of heritability is given. Asymptotic tests are derived also. Finally, the paper extends the linear model to allow the number of observations in each cell to be random.
منابع مشابه
Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملOn the Second Order Behaviour of the Bootstrap of L_1 Regression Estimators
We consider the second-order asymptotic properties of the bootstrap of L_1 regression estimators by looking at the difference between the L_1 estimator and its first-order approximation, where the latter is the minimizer of a quadratic approximation to the L_1 objective function. It is shown that the bootstrap distribution of the normed difference does not converge (eit...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملOn the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملWavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables
We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...
متن کامل